prediction_generation/old-code/cpdbench_kcpa copy.py (31 lines of code) (raw):

#!/usr/bin/env python # -*- coding: utf-8 -*- """ Author: Simon Trapp Date: 2021-08-25 """ import argparse import time from signal_processing_algorithms.energy_statistics import energy_statistics from cpdbench_utils import load_dataset, exit_success import copy def parse_args(): parser = argparse.ArgumentParser(description="Run KCPA algorithm on a time series dataset.") parser.add_argument('-i', '--input', required=True, help="Path to the input JSON dataset file.") parser.add_argument('-o', '--output', required=True, help="Path to the output JSON file.") parser.add_argument('-L', '--maxcp', type=int, default=100, help="Maximum number of change points for KCPA (default is 100).") parser.add_argument('-C', '--cost', type=float, help="Cost parameter for KCPA.", default=1.0) parser.add_argument('-m', '--minsize', type=float, help="Minimum size.", default=3) parser.add_argument('-k', '--kernel', type=float, help="Kernel.", default='linear') return parser.parse_args() def main(): args = parse_args() data, mat = load_dataset(args.input) start_time = time.time() raw_args = copy.deepcopy(args) try: series = data['series'][0]['raw'] transformed_data = np.array(time_series_values).reshape(-1, 1) algo = rpt.KernelCPD(kernel=args.kernel, min_size=args.minsize, cost=args.cost).fit(transformed_data) locations = algo.predict(n_bkps=args.maxcp) stop_time = time.time() runtime = stop_time - start_time exit_success(data, raw_args, args, locations, runtime, __file__) except Exception as e: exit_with_error(data, raw_args, args, str(e), __file__) if __name__ == "__main__": main()