prediction_generation/old-code/cpdbench_kcpa copy.py (31 lines of code) (raw):
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Author: Simon Trapp
Date: 2021-08-25
"""
import argparse
import time
from signal_processing_algorithms.energy_statistics import energy_statistics
from cpdbench_utils import load_dataset, exit_success
import copy
def parse_args():
parser = argparse.ArgumentParser(description="Run KCPA algorithm on a time series dataset.")
parser.add_argument('-i', '--input', required=True, help="Path to the input JSON dataset file.")
parser.add_argument('-o', '--output', required=True, help="Path to the output JSON file.")
parser.add_argument('-L', '--maxcp', type=int, default=100, help="Maximum number of change points for KCPA (default is 100).")
parser.add_argument('-C', '--cost', type=float, help="Cost parameter for KCPA.", default=1.0)
parser.add_argument('-m', '--minsize', type=float, help="Minimum size.", default=3)
parser.add_argument('-k', '--kernel', type=float, help="Kernel.", default='linear')
return parser.parse_args()
def main():
args = parse_args()
data, mat = load_dataset(args.input)
start_time = time.time()
raw_args = copy.deepcopy(args)
try:
series = data['series'][0]['raw']
transformed_data = np.array(time_series_values).reshape(-1, 1)
algo = rpt.KernelCPD(kernel=args.kernel, min_size=args.minsize, cost=args.cost).fit(transformed_data)
locations = algo.predict(n_bkps=args.maxcp)
stop_time = time.time()
runtime = stop_time - start_time
exit_success(data, raw_args, args, locations, runtime, __file__)
except Exception as e:
exit_with_error(data, raw_args, args, str(e), __file__)
if __name__ == "__main__":
main()